Test Code TPBF Protein, Total, Body Fluid
Performing Laboratory

Specimen Type
Body FluidOrdering Guidance
For protein measurement in spinal fluid specimens, order TPSF / Protein, Total, Spinal Fluid. Testing will be changed to TPSF if this test is ordered on that specimen type.
Necessary Information
1. Date and time of collection are required.
2. Specimen source is required.
Specimen Required
Specimen Type: Body fluid
Preferred Source:
-Peritoneal fluid (peritoneal, abdominal, ascites, paracentesis)
-Pleural fluid (pleural, chest, thoracentesis)
-Drain fluid (drainage, JP drain)
-Pericardial
Acceptable Source: Write in source name with source location (if appropriate)
Collection Container/Tube: Sterile container
Submission Container/Tube: Plastic vial
Specimen Volume: 1 mL
Collection Instructions:
1. Centrifuge to remove any cellular material and transfer into a plastic vial.
2. Indicate the specimen source and source location on label.
Specimen Minimum Volume
0.5 mL
Specimen Stability Information
Specimen Type | Temperature | Time |
---|---|---|
Body Fluid | Refrigerated (preferred) | 7 days |
Frozen | 30 days | |
Ambient | 24 hours |
Reference Values
An interpretive report will be provided.
Day(s) Performed
Monday through Sunday
CPT Code Information
84157
Report Available
Same day/1 to 2 daysReject Due To
Gross hemolysis | Reject |
Gross lipemia | Reject |
Gross icterus | Reject |
Anticoagulant or additive Breast milk Nasal secretions Gastric secretions Bronchoalveolar lavage (BAL) or bronchial washings Colostomy/ostomy Feces Cerebrospinal fluid Saliva Sputum Urine Vitreous fluid |
Reject |
Method Name
Colorimetric
Clinical Information
Pleural fluid:
Pleural fluid is normally present within the pleural cavity surrounding the lungs, serving as a lubricant between the lungs and inner chest wall. Pleural effusion develops when the pleural cavity experiences an overproduction of fluid due to increased capillary hydrostatic and osmotic pressure that exceeds the ability of the lymphatic or venous system to return the fluid to circulation. Laboratory-based criteria are often used to classify pleural effusions as either exudative or transudative. Exudative effusions form due to infection or inflammation of the capillary membranes allowing excess fluid into the pleural cavity. Patients with these conditions benefit from further investigation and treatment of the local cause of inflammation. Transudative effusions form due to systemic conditions such as volume overload, end stage kidney disease, and heart failure that can lead to excess fluid accumulation in the pleural cavity. Patients with transudative effusions benefit from treatment of the underlying condition.(1)
Dr. Richard Light derived criteria in the 1970s that are still used today for patients with pleural effusions.(2) The criteria include the measurement of total protein and lactate dehydrogenase (LDH) in pleural fluid and serum. Exudates are defined as meeting 1 of the following criteria:
1. Pleural fluid to serum protein ratio above 0.5
2. Pleural fluid LDH above two-thirds the upper limit of normal serum LDH
3. Pleural fluid to serum LDH ratio above 0.6
Dr. Light's criteria were designed to be sensitive for detecting exudates at the expense of specificity.(3) Heart failure and recent diuretic use contribute to most misclassifications by Dr. Light's criteria (transudates falsely categorized as exudates). Serum-to-fluid protein gradient (serum protein minus fluid protein) may be calculated in these cases and when more than 3.1 g/dL suggests the patient has a transudative effusion.
Peritoneal fluid:
The pathologic accumulation of fluid within the peritoneal cavity is commonly referred to as ascites. The most common cause of ascites is liver cirrhosis. Differentiating cardiac from cirrhotic ascites is a common clinical conundrum as they are common conditions presenting with elevated serum ascites albumin gradient.(4) Heart failure leads to the development of high gradient ascites due to hepatic sinusoidal hypertension. Since the sinusoids are normal and have not been damaged from collagen deposition associated with cirrhosis, protein tends to "leak" more readily into ascites and is associated with higher total protein concentrations.